Differences between HA receptor-binding sites of avian influenza viruses isolated from Laridae and Anatidae.
نویسندگان
چکیده
A comparative study of the hemagglutinin (HA) receptor binding site (RBS) of a number of H13 influenza viruses isolated from Laridae family of birds (gulls) and other influenza viruses obtained from the Anatidae family (ducks) was conducted. The affinity of all viruses to alpha N-acetylneuraminic acid (Neu5Ac alpha), 3'sialyllactose (3'SL), and sialylglycopolymers bearing 3'-sialyl(N-acetyllactosamine) (3'SLN-PAA), [Neu5Ac alpha(2-3)Gal beta(1-4)][-Fuc alpha(1-3)]GlcNAc beta (SLe(x)-PAA), and [Neu5Ac alpha(2-3)Gal beta(1-3)][-Fuc alpha(1-4)]GlcNAc beta (SLe(a)-PAA), was determined. The last three polymer glycoconjugates were synthesized for determining the contribution of carbohydrate chains after the galactose link to the binding with the receptor. The difference in affinity between 3'SL and Neu5Ac alpha in all studied H13 viruses is small, which indicates a less significant role of the galactose moiety in the binding to the receptor. The results of virus binding with polymer sialylglycoconjugates indicates that the method of linking, the third monosaccharide moiety, and the presence of an extra fucose substitute in this moiety may influence the binding considerably. For viruses isolated from ducks, the suitable polymer is SLe(a)-PAA (i.e., a 1-3 linkage between galactose and glucosamine is optimal). This finding is in accord with the data that H13 viruses isolated from the gulls differ based on their ability to interact with polymer sialylglycoconjugates. The affinity to all three polymers is uniform, and the presence of GlcNAc-linked fucose does not prevent the binding. A comparative analysis of six sequenced HA H13 viruses and other subtype viruses showed presence of substantial differences in the composition of amino acids of this region in H13 viruses.
منابع مشابه
Phylogenetic Analysis of Hemagglutinin Gene of H9N2 Avian Influenza Viruses Isolated from Chicken in Iran in 2010-2011: Emerging of a New Subgroup
Background and Aims: Hemagglutinin (HA) protein of Avian Influenza (AI) plays an essential role in the virus pathogenicity. AI H9N2 subtype causes significant economic loss in broiler and layer in poultry farms in Iran. AI viruses have a great involvement in evolutionary changes at nucleotide and amino acid levels and vaccines could induce faster rates of such changes. Up-dated understanding of...
متن کاملPathogenicity and haemagglutinin gene sequence analysis of Iranian avian influenza H9N2 viruses isolated during (1998–2001)
Sixteen avian influenza (AI) H9N2 viruses were isolated from disease outbreaks in different parts of Iranduring (1998–2001). These AI isolates were used for pathogenicity, haemagglutinin (HA) gene variation andphylogenetic analysis. Results in both pathogenicity tests and HA gene cleavage site sequence detectionrepresented a non-highly pathogenic feature for all Iranian AI isolates studied. The...
متن کاملNeuraminidase gene sequence analysis of avian influenza H9N2 viruses isolated from Iran
Influenza A viruses possesses two virion surface glycoproteins including haemagglutinin (HA) and neuraminidase (NA). The NA plays an important role in viral replication and promotes virus release from infected cells and facilitates virus spread throughout the body. To find out any genomic changes that might be occurred on NA gene of avian influenza circulating viruses, we have genetically analy...
متن کاملAmino Acid Sequence Analysis of Hemagglutinin Protein of H9N2 Isolated from Broilers in Tehran in 2007
Background and Aims: Since 1998, Iranian poultry industry has been affected by avian influenza (AI) virus, subtype H9N2. The association of high mortality and case report of H5N1 and H9N2 influenza virus in wild birds in recent years raised the suspicion of a possible new genetic modified AI virus. Methods: Partial nucleotide sequences and deduced amino acid of hemagglutinin (HA) genes of 4 H9...
متن کاملMolecular evaluation of M2 protein of Iranian avian influenza viruses of H9N2 subtype in order to find mutations of adamantane drug resistance
Background: The H9N2 subtype of influenza A viruses is considered to be widespread in poultry industry. Adamantane is a group of antiviral agents which is effective both in prevention and treatment of influenza A virus infections. These drugs inhibit M2 protein ion channel which has role on viral replication. OBJECTIVES: The main objective of this study is to evaluate M gene of avian influenza ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Avian diseases
دوره 47 3 Suppl شماره
صفحات -
تاریخ انتشار 2003